
An Autonomous Camera System
using the da Vinci Research Kit

Shahab Eslamian, Luke A. Reisner, Brady W. King,
and Abhilash K. Pandya*, Member, IEEE

*Associate Professor, Electrical and Computer Engineering

Computer-Assisted Robot-Enhanced Systems (CARES) Lab

Wayne State University, Detroit, MI

Abhilash Pandya Wayne State University, apandya@wayne.edu

Introduction

• Current surgical camera control (using a human assistant or
teleoperated robot) can be inefficient, error prone, and costly
• We’ve observed camera movement interrupting the flow of surgery up to 100

times/hour

• Suboptimal camera views are sometimes selected to avoid interruption

• Tool(s) sometimes leave the field of view, posing a risk to the patient

• We have created a test platform using the da Vinci Research Kit
(DVRK) that implements basic autonomous control of the camera

Wayne State University, apandya@wayne.edu

Overview of Methods

• Hardware setup
• da Vinci Research Kit software and FPGA

boards

• PID parameter calibration

• Robot arm co-registration

• Camera calibration parameters

• Software development
• Reimplemented the teleoperation module

• AutoCamera control algorithms

• Basic accuracy and usability testing

Wayne State University, apandya@wayne.edu

System Hardware

• Full da Vinci Standard Surgical
System

• Da Vinci Research Kit (DVRK)
control boxes

• PC with Ubuntu and the Robot
Operating System (ROS)
framework

Wayne State University, apandya@wayne.edu

System Architecture

• Data flows through ROS nodes

• The DVRK reads the poses of the
robot arms as the surgeon
moves the hand controllers

• AutoCamera software moves the
camera arm (ECM)

• Robot’s state is reflected in a
simulation environment (RViz)

Wayne State University, apandya@wayne.edu

da Vinci Robot Arm Co-registration

Other arm’s base relative to PSM1 base:
A𝑇G =

A𝑇B
B𝑇C

C𝑇D
E𝑇D

−1 F𝑇E
−1 G𝑇F

−1

• Tips of arms touched together in ~6–10 different configurations
• Error is computed as the calculated distance between the tips (should be ~0)
• Error minimized by optimizing a 3D transformation between the arms’ basesWayne State University, apandya@wayne.edu

Stereo Camera Calibration

• The zoom control algorithm relies on projecting points in the 3D view
to 2D pixel coordinates
• Camera calibration parameters needed to perform this projection

• We used the camera_calibration package in ROS

• The identified camera calibration parameters include:
• Focal length

• Field of view

• Distortion parameters

• Projection matrix

• Rectification matrix

Wayne State University, apandya@wayne.edu

AutoCamera Midpoint Tracking Algorithm
function : track_midpoint
keyhole_point = forward_kinematics(all ECM joint values

set to zero)
current_pose = forward_kinematics(current ECM joint

values)
current_direction = the vector from keyhole_point to

current_pose[position]
psm1_point = forward_kinematics(PSM1 joint values)
psm2_point = forward_kinematics(PSM2 joint values)
mid_point = centroid of psm1_point and psm2_point
desired_direction = unit vector from keyhole_point to

mid_point
R = rotation matrix from current_direction to

desired_direction
L = extension length of the ECM's prismatic insertion

joint
new_ecm_point = keyhole_point + (desired_direction * L)
ecm_pose[orientation] = R * current_pose[orientation]
ecm_pose[position] = new_ecm_point
new_ecm_joint_values = inverse_kinematics(ecm_pose)

1. Compute the midpoint
of the tools

2. Compute the line that
passes from the camera
arm keyhole to the
midpoint

3. Align camera to that line

Wayne State University, apandya@wayne.edu

AutoCamera Zoom Control Algorithm

function : adjust_zoom_level
mid_point = x- and y-coordinates of the image’s center
dx = horizontal distance between either tool and the

mid_point
dy = vertical distance between either tool and the

mid_point
ax = horizontal distance between the mid_point and the

edge of the image
ay = vertical distance between the mid_point and the edge

of the image
if tool1 and tool2 are in the inner zone

zoom_increment = min(dx/ax, dy/ay)
elseif tool1 and tool2 are in the dead zone

zoom_increment = 0
elseif tool1 and tool2 are in the outer zone

zoom_increment = -1 * min((ax-dx)/ax, (ay-dy)/ay)
zoom_level = zoom_level + zoom_increment

• Three zones around view center:

• The goal is to keep the tools in
the dead zone
• Zooms in when tool endpoints in

inner zone

• Zooms out when tool endpoints in
outer zone

Outer Zone

Dead
Zone

Inner
Zone

Wayne State University, apandya@wayne.edu

Implemented Baseline AutoCamera Algorithm

Wayne State University, apandya@wayne.edu

https://www.youtube.com/watch?v=mb8f259PBMo&t=17s

https://www.youtube.com/watch?v=mb8f259PBMo&t=17s
https://www.youtube.com/watch?v=mb8f259PBMo&t=17s

Basic Accuracy and Usability Testing

• System accuracy after co-registration was assessed by comparing the
distance between tool tips for real hardware vs. ideal simulation in 10
poses
• ECM to PSM1: mean absolute difference of 1.54 mm (95% C.I. of 0.40–2.68 mm)

• ECM to PSM2: mean absolute difference of 1.91 mm (95% C.I. of 1.02–2.80 mm)

• We used the system to perform a peg-transfer task with AutoCamera
• We were able to complete the task with much fewer interruptions than manual

camera control

• The basic AutoCamera algorithm followed the midpoints of the tools and
zoomed as intended

Wayne State University, apandya@wayne.edu

Results of Co-registration

Wayne State University, apandya@wayne.edu

da Vinci Recording and Playback System

Wayne State University, apandya@wayne.edu

https://www.youtube.com/watch?v=btgeu8B_qdQ

https://www.youtube.com/watch?v=btgeu8B_qdQ

VR Headset for Camera Movement

Wayne State University, apandya@wayne.edu

Conclusions & Future Work

• AutoCamera on da Vinci is possible and has the potential to be useful

• The current AutoCamera algorithm is very simple

• More intelligent techniques, guided by testing, are needed
• We’re planning user subject studies to compare traditional camera control

with AutoCamera

• We’re investigating the integration of task analysis and task-specific behaviors
for different surgical procedures, including deep learning of tasks

• We’re considering imaging processing and other sensing techniques to
support object tracking (bodily structures, clips, needles, etc.)

Wayne State University, apandya@wayne.edu

Credits & Collaborations

• Peter Kazanzides, Anton Deguet, Russ Taylor, and Zihan Chen,
Johns Hopkins University

• Greg Fischer, Worcester Polytechnic Institute

• Simon DiMaio, Intuitive Surgical

• Michael Klein, M.D., Children’s Hospital of Michigan

• David Edelman, M.D., Detroit Medical Center

• Anthony Composto, M.S., WSU

• Tareq Dardona, B.S., WSU

• …and many other undergraduate/graduate students at the
CARES lab

Wayne State University, apandya@wayne.edu

Feedback

Thanks for listening!

Any questions, comments, or suggestions?

Wayne State University, apandya@wayne.edu

Special Issue "Medical Robotics: Advances in
Training, Ergonomics, Sensing, Control and Other
Areas"
•A special issue of Robotics (ISSN 2218-6581).

•Deadline for manuscript submissions: 31 December
2017

•http://www.mdpi.com/journal/robotics/special_issue
s/medicalrobotics

•A way to showcase dVRK and Raven research.

• In interested, email me apandya@wayne.edu

Wayne State University, apandya@wayne.edu

http://www.mdpi.com/journal/robotics
http://www.mdpi.com/journal/robotics/special_issues/medicalrobotics

