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I. INTRODUCTION

The DVRK is currently used by 26 research groups
around the world [1]. The platform consists of two patient
side manipulators (PSMs), one endoscopic manipulator and
two master tool manipulators (MTMs). The Johns Hopkins
University [2] provides a full ROS-based open controller of
all the DVRK robotic arms. The controller allows position,
velocity and current control and thus opens the way for
developing and testing advanced control techniques. How-
ever, some control techniques, e.g. impedance-force control,
realistic dynamic simulations and sensor-less strategies for
collision detection or contact force estimation, requires an
accurate knowledge of the robots dynamic models.

The aim of this work is to derive a complete dynamic
model of both the MTMs and the PSMs arms of the
DVRK system and use state of the art methods to obtain
accurate identification of the dynamic parameters. In the
case of the DVRK robot the presence of a 1-DOF double
parallelogram and a counterweight in the PSM, and of a 2-
DOF parallelogram in the MTM make the model complex
and require a detailed discussion. A constrained optimization
approach based on LMIs has been adopted to guarantee
physical consistency of the dynamic parameters. The results
of the experimental validation of the identified models are
satisfactory, especially for the PSM, although they could be
further improved.

II. DVRK DYNAMIC MODELLING

In this section the dynamic models of both the PSM
and MTM are presented. The computation of the dynamic
model of the PSM arm can be performed using, e.g., the
recursive Newton-Euler approach. The classical version of
the algorithm for open kinematic chains must be suitably
modified to include additional dynamic effects, as reported
in details in the next sections. Thus the Newton-Euler al-
gorithm, allows computing the vector of the joint torques
τ taking into account the inertia, Coriolis, centrifugal and
gravity generalised forces. The contributions due to joint
friction and to elastic forces acting on some of the joints
can be added separately, i.e.:

τARM = τ + τ f + τ e (1)

where the friction contribution τ f has been set as the sum
of viscous and static friction:

τ f = F vq̇ + F ssgn (q̇) (2)

and the elastic contribution τ e models the elastic forces
acting on some joints.

τ e =Keq (3)
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Fig. 1. Schematic of the PSM kinematics with the Denavit-Hartenberg
frames
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Fig. 2. Master tool Manipulator (MTM) kinematics with Denavit-
Hartenberg frames

A. PSM arm

Each PSM is a 7-DOF actuated arm, which moves a surgi-
cal instrument about a Remote Center of Motion (RCM), i.e.,
a fixed fulcrum point that is invariant to the configuration of
the PSM joints. The first 6 degrees of freedom correspond to
Revolute (R) or Prismatic (P) joints, combined in a RRPRRR
sequence. The last degree of freedom, corresponding to the
opening and closing motion of the gripper, is not considered
here. Moreover, the PSM arm is mounted on a passive
base (the so-called setup joint) which allows translating and
rotating the arm with respect to the patient. Hence, a suitable
transformation matrix Tw

b of the base frame b with respect to
the world frame w must be taking explicitly into account in
computing the dynamic model of the PSM because it affects
the gravity torque reflected at the joints.

The classical version of the Newton-Euler algorithm for
open kinematic chains must be suitably modified to include
the dynamic effects of: 1. the counterweight used to balance
the motion of the instrument along the prismatic joint; 2.
the links of the double parallelogram mechanism. In details,



with reference to Fig. 1, representing the complete kinematic
structure of the PSM, the forward and backward recursions
can be applied to the open kinematic chain composed by
joints {1, 2, 2′, 2′′, 3, 4, 5, 6}. An additional branch of the
chain must be considered to take into account the coun-
terweight. The effects of the double parallelogram can be
accounted by imposing constraints to the kinematic variables
and to the joint torques. For more details refer to [3].
Moreover, the counterweight, is modeled as a link which
slides along a prismatic joint attached to link L2 and linked
by a tendon driven mechanism to the actuator of the prismatic
joint 3. The friction coefficients reported in Eq. 2 are F v =
diag{Fv1, . . . , Fv4,F vl}, where F vl is a (2× 2) matrix and
F s = diag{Fs1, . . . , Fs6}. Matrix F vl models the viscous
friction for the last 2 joints, that are coupled by a tendon
driving mechanism. Moreover, the elastic contribution in Eq.
3 τ e models the elastic forces acting on joints 1 and 2 that
are created by the power cables, while an elastic torque,
produced by a torsional spring, is present on joint 4. Finally,
for the last three links, corresponding to the instrument wrist,
the mass and inertia properties have been neglected and the
corresponding parameters have been set to zero.

B. MTM arm
The two MTMs, used to remotely teleoperate the two

PSMs and the endoscopic manipulator, are identical except
for their wrists, that are mirrored. Each MTM is an 8-
DOF manipulator. Only the first 7 degrees of freedom are
considered in the kinematic and dynamic model described
here, while the last degree of freedom is not actuated and is
used to command the opening and closing of the instrument
gripper. Moreover, two passive revolute joints J2′ and J2′′

are defined to model the parallelogram mechanism.
The homogeneous transformation matrix T b

7(q) can be
computed, e.g., by considering the kinematic chain (see
Fig. 2) {1, 2, 3, 4, 5, 6, 7} and taking into account that the
parallelogram mechanism imposes the following constraints
to the joint variables: q2′ = q2 + q3, q2′′ = −q3.

The computation of the dynamic model of the MSM arm,
as well as the PSM arm, can be performed using the recursive
Newton-Euler approach. The version of the algorithm for
closed kinematic chains must be adopted, to take into account
for the parallelogram mechanism. Also for the MTM the
friction contribution τ f has been set as the sum of viscous
and static friction, e.g. in Eq. 2 with F s and F v set as
diagonal matrices. Moreover, an elastic term, is added in
order to models the elastic torques acting on joint 1, due
to the power cables, and on joints 4, 5 and 6, caused by
torsional springs.

III. IDENTIFICATION OF THE DYNAMIC PARAMETERS

In this work, the method proposed by Sousa e Cortesão [4]
is adopted for the dynamic parameters identification. The
method is based on a semidefinite programming reformula-
tion of the least squares method and allow to preserve the
physical consistency of the dynamic parameters. Moreover,
the method has been modified by weighting the regressor
matrix in order to compute a suitable normalization [3].
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Fig. 3. Measured and computed torques along a test trajectory. Left: PSM
arm, Right: MTM arm

IV. EXPERIMENTAL RESULTS

The identification of the dynamic parameters of both
the PSM and the MTM arm is obtained using an optimal
trajectory calculated to minimize the condition number of
the regressor matrix, taking into account the robot kinematic
constraints e.g. position and velocity joint limit [3].

Fig. 3 reports, for both the PSM and MTM arms, the mea-
sured torques and those computed using the dynamic model
with the identified parameters, considering a test trajectory
different from that used for the identification. The dashed line
is the reconstruction error. The errors are not negligible in
particular for the wrist joints of both the arms; however, the
results are globally satisfactory considering the high sensors
noise, especially on the joint velocities and accelerations, that
are computed numerically, and the unmodelled dynamics,
like friction and elasticity of the tendons.

V. CONCLUSION AND FUTURE WORKS

In this work the dynamic model identification of the da
Vinci Research Kit robotic arms was presented. The error
between the measured torques and those computed using the
identified dynamic model remains below 30% for almost all
the joints. Future work will be devoted to reduce this error,
for example using non-linear friction models for the tendon
driven joints, and to test the accuracy of the model-based
sensor-less estimation of the contact forces.
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